If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+8w-128=0
a = 1; b = 8; c = -128;
Δ = b2-4ac
Δ = 82-4·1·(-128)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24}{2*1}=\frac{-32}{2} =-16 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24}{2*1}=\frac{16}{2} =8 $
| 54.00+9x=38+13x | | 4^(3x-1)=15 | | 500=0.75n+140 | | 3x-67x+10=0 | | 30=x+3x | | 7z/6-10=18 | | 3b+40=-5 | | 4n-26=41+n | | 32y+32=64 | | -2.5x+2.2x=17.61 | | 4n-3/5=8 | | 4p+8=5p-7 | | -3(4p+5)-2(3+-14p)=3(8+5p) | | 3/5x+4/5=9/10 | | (2x+3)/4=6 | | 4a^2-4=-3 | | x/(x=2)=5 | | -3(4p+5)-2(3-14p)=3(8+5p) | | x/x+2=5 | | 98x=197 | | 60=40t+5t^2 | | 4(4x+11)=5(x+44) | | Y+2y=10+2 | | 4y^2+27y+30=0 | | 16p+-21=24+15p | | 5x+15-2x+2=17 | | 8n=104n=8 | | 5e+3=17 | | 3x+7x-5x=5 | | -4x-4+6x=2x+4-8 | | 1.25x^2=2x^2-6x | | 12x+15=35-3x |